Federal Reserve Economic Data

The FRED® Blog

Data fluctuations from Manic Monday to Freaky Friday

FRED tracks weekdays per month, quarter, and year

High-frequency data can include seasonal factors that affect economic activity. The timing of federal and local holidays changes each year, and weekends can fall all over the place in any given month. So not every period has the same number of business days. FRED now has data to help you sort that out.

Although it doesn’t account for holidays, the graph above shows the number of weekdays in a month. The data come from a release on domestic auto and truck production from the Board of Governors, which helps in cleaning the data of seasonal and predictable factors. The variation in weekdays is actually quite important, as it fluctuates between 20 and 23 days per month, which is a difference of over 10%.

The second graph shows the number of weekdays in a quarter, which fluctuates between 64 and 66 days, a difference of  about 3%, which is still large when you consider the typical quarterly growth rate of an economy is between 0.5% and 1%. The last graph shows the same statistic for a full year, between 260 and 262 days. Here, the difference is less than a percent, but it’s still significant.

How these graphs were created: For the first graph, search for “weekday” and the series we use here should be at the top of the list. Do the same for the second and third graphs, but use the “Edit Graph” panel to change (1) the frequency to quarterly and annual, respectively, and (2) the aggregation method to “Sum.”

Suggested by Christian Zimmermann.

View on FRED, series used in this post: G17MVSFWWKDAYS

Central banking since 1701

Three centuries of Bank of England asset data

The British have a history of recording excellent historical data, and we’ve already written a few related posts. Today we look at central bank assets for the Bank of England, founded in 1694. The graph above shows the assets as a share of GDP since 1701, which is a remarkable timeline, especially because it requires estimates of GDP from before the American Revolutionary War not to mention the Battle of Culloden!

This FRED graph shows us that assets in the 18th century reached a fifth of GDP before slowly receding. There were run-ups during the turmoil of the Great Depression, World War II, and the Great Recession and its financial crisis. For comparison, we added the (much shorter) corresponding series for the United States in red. It’s pretty amazing how well they match up.

How this graph was created” Search for “Bank of England assets,” select the appropriate series, and click “Add to Graph.” From the “Edit Graph” panel, open the “Add line” tab, and search for “federal reserve assets.” Once you have the series, change its frequency to quarterly, add a series looking for “nominal GDP,” and apply formula a/b/10. (We multiply by 100 to get percent but divide by 1000 to have the same units for a and b: thus, /10.)

Suggested by Christian Zimmermann.

View on FRED, series used in this post: BOEBSTAUKA, GDP, WALCL

CO2 in the air: How does it get there?

CO2 emissions by fuel type and sector

In a previous post, we looked at carbon emissions by fuel type broken down by different economic sectors. Today, we slice the data another way: We look at each economic sector and break down their emissions by fuel type. The first graph shows that the big emitters are transportation, electric power generation, and industry. Overall emissions have tended to decline, mostly thanks to a decline from power generation.

The next graph shows the commercial sector. Overall, it emits relatively little CO2 and all fuel types seem to be on the decline. The recent surge in gasoline is most likely due to a reclassification of some sub-sectors into the commercial sector.

The next graph, which shows emissions from the industrial sector, isn’t very enlightening, as the largest fuel type is “Other.” But all fuel types are emitting less, except for distillate fuels such as diesel.

Electric power generation is traditionally the largest emitter, so it’s particularly relevant to consider its fuel composition. A clear majority of its emissions come from coal, but this is now on a steady decline. Natural gas has increased, but overall emissions from this sector have been decreasing.

Our last two graphs consider the transportation and residential sectors: Clearly, the transportation sector is very heavily into petroleum, with a slight upward trend in its emissions. The residential sector is heavily into natural gas, plus a bit of petroleum, with a slight downward trend.

How these graphs were created: For the first, search for “carbon dioxide emissions all fuels,” use the side bar to restrict results to “nation,” select the series shown here, and click “Add to Graph.” From the “Edit Graph” panel, use the “Format” tab to select graph type “Area” and stacking “Normal.” The five other graphs are built similarly by searching for “carbon dioxide emissions” and the respective sector, including only series where the units are million metric tons. Note: The “Format” tab also allows you to choose colors for the series, which is useful for making the colors for the fuels consistent across graphs.

Suggested by Christian Zimmermann.

View on FRED, series used in this post: EMISSCO2TOTVCCTOUSA, EMISSCO2TOTVECCOA, EMISSCO2TOTVECNGA, EMISSCO2TOTVECPEA, EMISSCO2TOTVECTOUSA, EMISSCO2TOTVICTOUSA, EMISSCO2TOTVRCCOA, EMISSCO2TOTVRCNGA, EMISSCO2TOTVRCPEA, EMISSCO2TOTVRCTOUSA, EMISSCO2TOTVTCCOA, EMISSCO2TOTVTCNGA, EMISSCO2TOTVTCPEA, EMISSCO2TOTVTCTOUSA, EMISSCO2VCLCCBA, EMISSCO2VCLICBA, EMISSCO2VDFCCBA, EMISSCO2VDFICBA, EMISSCO2VKSCCBA, EMISSCO2VLUICBA, EMISSCO2VMGCCBA, EMISSCO2VMGICBA, EMISSCO2VRFCCBA, EMISSCO2VRFICBA


Back to Top