Federal Reserve Economic Data

The FRED® Blog

Constructing a bilateral real exchange rate

How to create new series on FRED

FRED lets you create commonly used data series that are not predefined. For example, you can normalize current account balances or government budget balances by GDP and you can deflate nominal data with a price index.

One popular variable that you can create is a bilateral real exchange rate index. While a nominal exchange rate is the relative price of 2 monies (e.g., the relative price of a euro in terms of U.S. dollars), a real exchange rate is the relative price of consumption baskets in two countries. A consumption basket is a set of goods and services that represent the purchases of a typical consumer in country in a given year. Thus the real exchange rate is the price of European goods in terms of U.S. goods. One converts a nominal exchange rate into a real rate by multiplying by the ratio of the national price levels:

U.S. goods per euro area goods basket = (USD per euro) * (euro price level) / (U.S. price level)

FRED has many kinds of broad, real effective exchange rates. Here is a list of FRED’s real U.S. exchange rates. These are effective or trade-weighted real exchange rates. They are weighted averages of bilateral real exchange rates. Currencies of the countries that the U.S. trade with the most receive the highest weights in the formula. Real effective exchange rates provide a look at changes in the overall value of foreign consumption baskets in terms of the U.S. consumption basket. When a real effective exchange rate rises (falls), the average foreign consumption basket becomes more (less) expensive in terms of U.S. consumption.

But what if you want to see the price of foreign consumption in terms of U.S. consumption for a particular country or area? For example, what if you want to see the real exchange rate for the dollar per euro, as we detailed at the start of the post? You can construct such a bilateral real exchange rate yourself in FRED using monthly price and exchange rate data from the U.S. and the euro area. The following instructions give you the graph at the top of this post.

1. Search for “euro” in the FRED search box and select “U.S. / Euro Foreign Exchange Rate.” The default graph will be a daily exchange rate (DEXUSEU).


2. Because consumer price series are monthly (or quarterly), use the orange “Edit Graph” button on the right hand side to change the frequency to monthly and the aggregation method to “average.” This series is series “a” in the graph. Keep the editing box open.

3. Add the U.S. and euro area CPI series using the “customize data” area.

a. To add the U.S. CPI data, type “cpi” directly under the text that says “You can begin by adding a series to combine with your existing series.” Click on the first series in the popup list called “Consumer price index for all urban consumers.” Click “Add” on the right-hand side of the box and the U.S. CPI series became series “b” in the graph. Note that the graph itself has not changed.

b. To add the euro area CPI data, type “euro cpi” directly under the text that says “You can begin by adding a series to combine with your existing series.” Click on the first series in the popup list called “Harmonized Index of Consumer Prices: All Items for the Euro Area.” Click “Add” on the right-hand side of the box and the euro CPI series became series “c” in the graph.

4. Now that we have defined our exchange rate and price series, we use them to construct a real exchange rate by typing the following formula in the “Formula” box near the bottom of the editing box: a*c/b. Then click “Apply” to the right of the box. The picture in the graph will finally change to the bilateral real exchange rate, i.e., baskets of U.S. goods per basket of euro area goods.

5. To change the real exchange rate to an index, select “Index (Scale value to 100 for chosen date)” from the “Units” box at the bottom of the editing box and then type “1999-01-01” in the date box. Close the edit box with the X in the upper right-hand corner.

6. To see a long span of the data series that you have created, select “Max” from the data range choices, i.e., “1Y | 5Y | 10Y | Max”, at the top of the graph.

Suggested by Chris Neely.

View on FRED, series used in this post: CP0000EZ19M086NEST, CPIAUCSL, DEXUSEU

When initial claims, unemployment, and payroll employment clash

Not long ago, the FRED Blog discussed several details about the construction and interpretation of the data for initial weekly claims for unemployment benefits. As of May 30, FRED shows that the four-week moving average was 2.3 million new claims. Yet, the FRED graph above shows that for the entire month of May 2020, there was a decrease in the number of persons unemployed. And there was also a simultaneous increase in the level of payroll employment. How is all this possible?

First of all, data related to the labor market come from different sources: The U.S. Employment and Training Administration reports the number of initial weekly claims for unemployment benefits; and the U.S. Bureau of Labor Statistics, through the Current Employment Statistics (Establishment Survey), reports the payroll employment and unemployment figures.

Also, the data series have similar names but represent different concepts. Even if you file an initial claim for unemployment benefits, for example, it does not necessarily mean that you will be counted as unemployed.

Finally, keep in mind that changes in the number of persons listed on payrolls do not correspond to changes in the number of persons employed or unemployed. The FRED graph below shows that during May, June, July, and October of 2019 there were simultaneous increases in the level of payroll employment and increases in the number of persons unemployed.

How these graphs were created: Search for and select “All Employees, Total Nonfarm” anuse the “Edit Graph” menu to add two more lines: “Unemployment Level” and “Employment Level.” Next, change the units of any of the three series to “Change, Thousands of Persons” and click on “Copy to all.” Lastly, change the graph format to “Bar,” edit the colors to taste, and change the date range to match the time periods of each graph.

Suggested by Diego Mendez-Carbajo.

View on FRED, series used in this post: CE16OV, PAYEMS, UNEMPLOY

The lockdown’s effect on the alcoholic beverage market

March's "last call for alcohol" boosted demand but only nudged prices

As U.S. cities and states started locking down in response to the COVID-19 pandemic, retail alcohol sales spiked. And they did so despite various additional restrictions for retailers and their customers.

Clearly, consumers were at least in part shifting from consumption in restaurants and bars to consumption at home. (The FRED Blog previously reported a similarly strong substitution from meals in restaurants to meals at home.) So, given this spike in retail purchases, what happened to prices?

If demand shoots up like this, market forces should increase prices as well. And prices paid by consumers did rise, but only moderately, as shown by the consumer price index (CPI). This moderate increase is even more surprising given the much larger increase in prices paid by retailers, as shown by the producer price index (PPI). That is, the data suggest retailers did not pass the full increase in costs on to their customers.

Why would retailers reduce their profit margins despite such a boost in demand? Price gouging in times of distress can damage a business’s reputation and is even illegal in some U.S. states. The demand shock may also have been perceived as temporary, so retailers may have been willing to forgo a large amount of quick profit to reinforce better long-term prospects with their regular customers.

How this graph was created: Search for and select the “retail sales beer” series. From the “Edit Graph” panel, use the “Add Line” tab to search for and select “PPI beer.” Repeat with “CPI beverages.” Choose units “Index (scale value to 100 for chosen date)” for 2020-02-01 and select “Apply to all.” Finally, limit the graph to the past 10 years.

Suggested by Christian Zimmermann.

View on FRED, series used in this post: CUSR0000SAF116, MRTSSM4453USS, PCU44534453


Back to Top