Federal Reserve Economic Data

The FRED® Blog

Posts tagged with: "GDPC1"

View this series on FRED

The business behind the trade balance

Why trade deficits decrease in recessions and increase in booms

How does the trade balance relate to economic activity? The graph above shows the U.S. trade balance for goods and services as a percentage of GDP. Obviously, there was a surplus initially and now there’s a persistent deficit. Beyond that, it looks like every time there’s a recession, the trade deficit tends to decrease. (Or, if we go farther back in the past, the trade surplus tends to increase.) Obviously, many things affect the trade balance, but let’s see what FRED can show us about this relationship.

A good way to reveal how series may be correlated is to look at scatter plots. Instead of relating economic data to dates, scatter plots relate two data series to each other, one on each axis. The graph above does this with changes to the trade balance ratio on one axis and percent changes to real GDP on the other axis. What may look like a random assortment of dots actually has some information. Imagine the graph is divided into four quadrants and then consider where the dots are located. The upper right and lower left quadrants have fewer data points than the other two, highlighting that there is indeed a negative correlation: That is, when real GDP tends to increase, the trade balance tends to decline—that is, trade surpluses decrease or trade deficits increase.

Why is that? First, consider that the trade balance is net exports—that is, exports minus imports. Imports are highly correlated with GDP, while exports are less so. We see this in the graph above, which plots imports. This time, the upper left and lower right quadrants are the most populated. This highlights the positive correlation: That is, when real GDP tends to increase, imports do as well. Thus, over the business cycle, it is really imports that drive the trade balance: When the economy is doing well, producers need more intermediate goods, and imports are mostly intermediate goods. Also households consume more, and a share of those consumption goods are imports. If you graph exports, the correlation is much harder to see. Exports depend much more on what happens abroad, which isn’t that well correlated with domestic activity.

How these graphs were created: First graph: Search for “net exports” and select the quarterly series. From the “Edit Graph” panle, add GDP and apply formula a/b*100. Second graph: Use the first graph and change the sample period to start in 1954. From the “Edit Graph” panel, change the units to “Change.” Add a line by searching for “real GDP,” change its units to “Percent change,” open the “Format” tab, and switch the type to “Scatter.” Third graph: Use the second graph but with real imports in percent change.

Suggested by Christian Zimmermann.

View on FRED, series used in this post: GDP, GDPC1, IMPGS, NETEXP

Taking the pulse of the economy

Connecting the San Francisco Tech Pulse with other economic indicators

The San Francisco Tech Pulse is a measure of the overall health of the American tech sector; it’s calculated using variables such as employment and consumption in the sector and investment in technology. The graph shows the Tech Pulse as well as total U.S. employment, CPI, and GDP indexed to January 2000. These other indicators are common benchmarks of general economic health: Rising GDP, slow changes in CPI, and high employment all indicate a strong economy.

During the 2008 recession, the indicators behaved as we would expect them to during such an economic downturn: employment fell steadily, as did GDP, and CPI spiked and then fell in a spell of high inflation followed by deflation. The tech pulse also plummeted, which makes sense considering it’s the sum of the above indicators in a specific area of the economy. Yet the Pulse began to rise earlier than the general indicators. This early recovery, beginning in April 2009, could indicate that the tech sector was one of the first parts of the economy to gain strength after the recession and assisted in the overall economic recovery.

However, the overall impact of technology shouldn’t be overestimated. During the earlier recession, in 2001, the other indicators remained fairly stable compared with the Tech Pulse, which decreased substantially. This drastic fall could demonstrate the opposite of the pattern we see in 2008: that the technology sector was a major loser in that recession and it was the rest of the economy that helped maintain relative stability.

How this graph was created: Search for and select “San Francisco Tech Pulse.” From the “Edit Graph” panel and the “Add Line” tab, search for and select the other series shown here: “GDP,” “CPI,” and “Employment.” In the “Units” section, select “Index (Scale value to 100 for chosen date),” set the date as January 1, 2000, and click “Apply to all.”

Suggested by Maria Hyrc and Christian Zimmermann.

View on FRED, series used in this post: CPIAUCSL, GDPC1, PAYEMS, SFTPINDM114SFRBSF

The puzzle of real median household income

The graph above shows two often-reported series that look at a measure of income adjusted for inflation and population: real median household income and real per capita GDP. They should be similar, but there are quite a few differences. For example, median household income has stagnated for about two decades while per capita GDP has steadily increased. Let’s try to straighten out this puzzle.

The blue line in the middle graph shows that the number of people in each household has decreased. So the number of households in the nation has increased faster than population, which means that any measure divided by population grows faster than one divided by number of households. To see how much this matters quantitatively, we divide both income concepts by the number of households in the bottom graph. Obviously, they still don’t line up, but at least the gap is smaller. What explains the remainder?

First, the income definitions are different: Household income is based on a survey that asks people about only their income, not their employer-provided benefits and retirement contributions. In a previous post, we showed that these benefits have increased relatively more than wages. Real GDP includes all income in the economy. Second, if the distribution of income becomes more unequal, then the median decreases while the mean stays put. How much each of these contribute to the remaining gap can only be determined with a look at the microdata.

How these graphs were create: Top graph: Search for “real median household income,” click on the series, open the “Edit Graph” panel, then select “Index (scale value to 100 for chosen date)” for units, with 1984-01-01 as the date. Then add a line after searching for “real per capita GDP.” Choose the same units. Middle graph: Search for “civilian population,” open the “Edit Graph” panel, then search for “number of households,” and apply the formula a/b. Bottom graph: Repeat the procedure for the top graph for the first line. For the second line, use the “Add Line” feature, search for “real GDP,” then add the “number of households” series, and apply formula a/b. Finally, choose as units “Index (scale value to 100 for chosen date)” with 1984-01-01 in the bottom field, as the units pertain to the result of the formula.

Suggested by Christian Zimmermann.

View on FRED, series used in this post: A939RX0Q048SBEA, CNP16OV, GDPC1, MEHOINUSA672N, TTLHH


Back to Top